Proofs for “AGM-Style Revision of Beliefs and Intentions” (ECAI2016)

Abstract. We prove soundness and completeness for the logic PAL-P (Parameterized-time Action Logic with extended
Preconditions), several propositions and lemmas, and representation theorems for the revision of beliefs and intentions.
Please see the original ECAI submission for an explanation of the logic.

1 Completeness Proofs

Theorem 1 (Completeness Theorem). The logic PAL-P is sound and strongly complete, i.e. T+ @ iff T = .
Proof. T+ @ =T = ¢ can be proven by standard techniques.
Strongly completeness: T =@ = T+ ¢.

We prove strongly completeness by constructing a canonical model, but before this we introduce some concepts that
we will need in different parts of the proof. These concepts will be largely familiar to most readers.

Definition 1 (Maximally consistent set (mcs)). Given the logic PAL-P, a set of formulas T is PAL-P-consistent if one
cannot derive a contradiction from it, i.e. if L cannot be inferred from it, in the proof system for PAL-P. A set of formulas
T* is a maximally PAL-P-consistent set (mcs) if it is PAL-P-consistent and for every formula @, either @ belong to the
set or =@ does.

We denote the part of a mes up to and include time t with T*, formally: T;* = T* N Past(t) (see Def. 1 of original paper).

Lemma 1 (Lindenbaum’s lemma). Every consistent set of formulas can be extended to a maximal consistent set of
Sformulas.

Lemma 2 (The Deduction Theorem). SU{¢p}Fy = ¢ —y

Definition 2 (Mcs Equivalence Relation). Suppose some t € N and two mcs’s T* and T, we define the equivalence
relation between T* and T", denoted by T* =, T" as follows: T* = T" iff T* N Past(t) =T " N Past(t).

Definition 3 (Equivalence class). Ler T* be a mcs. [T*]; is the set of all mes’s that are equivalent to T* up and
including time t, i.e. [T*], ={T" | T* = T"}.

The next step is to reduce truth of a formula in a maximal consistent set to membership of that set, which is the content
of the truth lemma. We first present a lemma that we need in the proof of the valuation lemma, which follows after that.

Lemma 3. Let X = {Qy,...,9,} be some set of PAL-P-formulas and abbreviate {{;¢1,...,0:;9,} with ;L. If X F ¢,
then DZZ = I:ll(p

Proof. Suppose {@j,...,0,} - ¢. By the deduction lemma, F (¢; A... A @,) — ¢. Applying necessitation gives
O ((@1 A ... A@y) — @), and from the K-axiom it follows that - s (@1 A ... A @,) — 0. Since T (@1 A ... AQ,) =
i1 A...0:9,, we obtain (1) - (O A...0:¢,) — ;0. Finally, since (2) {T:01,...,0:@,} F o1 A ... ATL@,
holds as well, we combine (1) and (2) and conclude that {CJ;@y,...,0,¢,} - 0, 0.

Lemma 4. T* O, T;*

Proof. We show that for all ¢ € T;* we have 7,* - J;¢ by induction on the depth of the proof. Take an arbitrary ¢ € 7;*.
We distinguish two base cases, one where @ is a proposition, and another where @ is an atomic “do” formula.

(Base case 1) Suppose ¢ =y, with x € Prop and ¢’ < t. [y, follows by applying Axiom A1. Then, apply Axiom A3 repeatedly
until [,y follows.
(Base case 2) Suppose ¢ = do(a)y with t' <t (note that do(a); cannot occur in T;* because it does not occur in Past(t)). Using
Axiom A4 and then repeatedly Axiom A3 we obtain [J;do(a) .
(Conjunction) Suppose @ =y Ax. The induction hypothesis is 7;* - O,y and 7;* F O,y so therefore from 7;* -y A, we obtain
T F Opw AOpy. Since Oy A Lyy is equivalent to O, (W Ay), it follows directly that 7,* - O, (w A).
(Box) Suppose ¢ = Uyy. By transitivity (which is not an axiom of our logic, but it holds in KT5): Oyy — OOy,
Next, apply Axiom A3 repeatedly to obtain L,/ @.
(Negation) We make another case distinction on the negated formula. That is, we assume 7,* - =@ and we show 7,* - [J; -,
again by induction on the depth of the formula.

(Base case 1) Suppose ¢ = —y with ¥ € Prop and t' < ¢, then [J,—y; follows from Axiom A2 and A3 as described before.
(Base case 2) Suppose ¢ = —do(a); witht’ < t. We apply Axiom A5 and A3 repeatedly until we have (;~do(a), .



(Conjunction) Suppose @ = —(yAy). The induction hypothesis is 7;* - O, =y and 7;* - O; =y, which implies 7,* F C;—~y v
U —, which again implies 7;* - OJ; (= V —). Using De Morgan we obtain 7;* F T, —(w AY).
(Box) Suppose ¢ = =y, which is equivalent to (), —y. From Axiom 5 we obtain [y O, =V, and by again applying
Axiom A3 repeatedly we obtain [J; O —, which is equivalent to [J; =y, and this is what we had to show.

Lemma 5 (Valuation lemma). For any maximal consistent set T*, the following are true
1. T* is deductively closed: T* & ¢ implies that ¢ € T*;
2. (PET* l"ﬁﬁ(PQT*;
3 oANyeT iffoeT andy € T*;
4. OeT iffforall T st.T* =T :9eT"

Proof. 1. Because T* is maximally consistent, either ¢ € T* or —¢@ € T*. Suppose that 7* I~ @, and suppose for
contradiction that =@ € T*. From this it follows that 7* - =¢ and therefore 7* -, which would contradict
consistency of 7*. Hence ¢ € T*.

2. Follows directly from the definition of a maximally consistent set.

. Follows directly as well.

4. =: Suppose [J;¢ € T*. Take arbitrary T~ with 7* =, T". From Def. 2 (equivalent mcs) it follows that (,¢ € T .
Therefore, by Axiom T we obtain ¢ € T
<: We show this by contraposition. Therefore, suppose [J;¢ & T*. We will show that there exists some T~ with
T"=T andogT".
Suppose for contradiction that —¢ is not consistent with 7;*, i.e. 7, U{—¢} FL, so by the Deduction Theorem
(Lemma 2), 7;* - @ holds. By Lemma 3, we have (1) 00,7, - [J;¢. From Lemma 4 it follows that (2) 7;* - O, T;*,
so combining (1) and (2) gives 7;* - [J;¢. But this contradicts with our initial assumption that (J;@ ¢ T*. Thus, the
assumption is invalid so 7;* U {—¢} is consistent.
By Lindenbaum’s lemma, 7,* can be extended to a mcs T*, and since 7,* C T*, it follows directly that T = T*.
Therefore, there exists a mcs T with T" =T "and ¢ & T, and this is what we had to show.

w

We construct the canonical model by naming the states in our model as equivalence classes of mcs’s, which are pa-
rameterized by a time point. For instance, the state s = [T]; is named as the set of mcs’s equivalent to the mes T* up
to and including time z. We then define accessibility relation between states named after equivalence classes up to and
including subsequent time points of the same mcs. Finally, the valuation function assigns the set of propositions that
are true in an equivalence class to the corresponding state.

Definition 4 (Canonical Tree). Given a mcs T*, we obtain a PAL-P-canonical tree Treer- = (S, R, v, act), where
1. S =Uyen S where S; = {[T"], | T" = T*}
2. SRS iff ATt €N).(s = [T AS' = [T 41)
3 pev(s)iff Tt eN).(s= [T Ap €T
4. a=act((s,s") iff AT").(s = [T |, As' = [T ]is1 Ado(a), €T")

Note that the existential quantifier in (3) of Def. 4 could equivalently be replaced by a universal quantifier, because of
the definition of equivalence classes (Def. 3): All mcs’s in [T*}, are equivalent up to time ¢, so if some timed proposition
pr is an element of some mcs in this set, then it is necessarily an element of any other mcs in this set as well.

Lemma 6. Given a mcs T*, Treer~ is a tree.

Proof. Suppose some T* and let Treer- = (S,R,v,act). We have to show that R is serial, linearly ordered in the past,
and connected.
— serial: Suppose some s € S s.t. s = [T*]t. We have to show that there exists some s’ € S such that sRs’, i.e. there
exists some 77" s.t. s = [T’]; and s’ = [T'),;,. This directly follows for 7/ = T and by the fact that T* is a mcs.
— linearly ordered in the past: Suppose some s € S s.t. s = [T*]t and ¢ > 0 (+ = 0 is the root of the tree). We show
that there exists exactly one s’ s.t. s'Rs. Suppose for contradiction that there exist s',s” € S with s’ = [T’];_; and
s" = [T"];_1 such that s’ # 5", i.e. T" #_1 T". However, then T’ #, T” holds as well, but this contradicts with
s'Rs and s”Rs. Thus, s’ # s is not possible.
— connected: Suppose s,s' € S with s = [T"]; and s' = [T”"],,. We show that there exists some s” such that s” R*s and
s""R*s', where R* is the transitive closure of R. This directly holds for s” = [T*]o, since thens” € {[T"]o | T =0 T*}.

Given a mecs T, we construct a path Ttr« = (s9,51,...) from it by letting s; = [T*];. So p € vp(nr+;) iff p; € T* and
a=act(ny+) iff do(a); € T*.
Given a path 7 in a canonical tree Treer+ and at € N, we denote

Ty i= T" N Past(t),

where T" € 7i;. Note that the definition is correct: Tr|; does not depend on the choice of the element from 7 by Definition
2 and 3. We construct the set T from a path 7 as follows:

Tr = T
teN

The next two lemmas show that for each 7 in the canonical tree Treer+, T is a mcs.



Lemma 7. Given a mcs T*, For any path T in the canonical tree Treer+: Ty, C Tyy41.

Proof. Suppose some mcs 7" and somoe arbitrary path 7 in the canonical tree Treer-. From the construction of the
canonical tree we have that 7R, , | iff there is some 7" with m; = [T, and ;41 = [T"],41. Clearly, we have that

T, C Ty, and since Tus € [T"]; and Ty € [T"];+1, we also have that Tae C Trjrs1-
Lemma 8. Given a mcs T*, for any path T in the canonical tree Treer-: Ty is a mcs.

Proof. (Consistent) From Lemma 7 we have that Ty o C ... C Ty),. Moreover, Ty, C T" where T" is a mcs, which is
consistent by definition, so 7y is consistent as well.

(Maximal) Suppose an arbitrary PAL-P-formula ¢. Then there is a maximal ¢ that appears in ¢, therefore, ¢ € Past(t).
By definition, @ € Ty, or =@ € Ty, Since Ty, C Ty, we have that ¢ € T or ~¢ € Ty. Hence Ty is maximal.

The following three lemmas are a direct consequence of the construction of 7y and 7.
Lemma 9. Given amcs T*, two paths T and 7' in the canonical tree Treer- and some time pointt: T ~; T iff. Ty = Ty
Lemma 10. Given two mes T* and T" and some time point t, T* =; T~ iff. Ty ~y Tope.

Lemma 11. Given a mes T, in the canonical tree Treer~,
1. Foreachm, n(r) =T
—

2. ForeachT", Ty =T".

Note that by the previous lemma, for every path 7 in the canonical tree Treer«, there exists a unique mcs T* such that
T = Tl7x.
T

Lemma 12. Given a mes T*: (Treers, T+ ) is a model.

Proof. Suppose some T*. From Lemma 6 we have that Treer+ is a tree. In order to show that (Treer*ﬂtf*) is a model
we prove the three conditions on a model. Recall that

T+ = (80,51, ...) where s, = [T*];.

1. Suppose act(s;) = a. By the truth definition we have that do(a) € s, so by the construction of s;: do(a); € T*. By
Axiom A9, post(a)11 €T, so post(a) € s;1 1

2. Suppose pre(...,a,b); € sy, so similarly we have pre(...,a,b) € sy, and hence pre(...,a,b); € T*. By Axiom All,
pre(...,a); € T* and so pre(...,a) € s;.

3. We can prove this condition in the same way.

Lemma 13 (Truth lemma). Given a mcs T*: for every maximally PAL-P-consistent set of formula T* and for every
Sformula @ :

(Treer,mp+) = @ iff. @ € T

Proof. By induction on the depth of the proof.

(Base case) Suppose ¢ = X, for some atomic proposition Y, € .Zpa;. From the truth definition we have Treer+, Tz =%
iff. ) € v(n7+,). From the construction of 77+, it follows then directly that ¥, € T"t. Suppose @ = do(a),. From the truth
definition we have Treers, Ty~ [= do(a); iff act(n7+,) = a. Again, from the construction of Tz we obtain do(a), € T
(Negation) Suppose ¢ = —\. From the valuation lemma we know that —~y € T iff y ¢ 7. By the induction hypothesis,
y ¢ T" is equivalent to Treer+, Top [~ . According to the truth definition that is equivalent to Treer+, iz~ |= —. Hence,
—y € T is equivalent to Treer-, T |= .

(Conjunction) Suppose @ = W Ay. From the valuation lemma we know that yAy € T" iff w e T" andy € T". By the
induction hypothesis, that is equivalent to Treer+, 77+ = W and Treer-, iz |= X, respectively. Lastly, applying the truth

definition, this is equivalent to Treer, 77+ |= W AX. Therefore, y Ay € T" iff Treer-, T = WAY.
(Necessity) Suppose ¢ = L, y. We show both directions of the bi- implication separately
= Suppose that Treer-, T « = Oy, ie. for all 7 with T~ ' : Treeps, 7 = y. Pick such 7' arbitrarily. From

Lemma 11 we have that there is a unique mcs T such that ' = T Thus, Treer+, T E v holds, and by the induction
hypothesis, y € 7t( ) holds as well. Since 1(T™) ~; ﬂ:( ) from Lemma 10 we obtain T~ =, T. Thus, by the valuation
lemma we obtain [,y € T,
1 — —% —% —%
«: Suppose that ;¢ € T". By the valuation lemma, for all T with T° =, T :y & T . Take such T arbitrarily.
f— —%
From the induction hypothesis we have that TreeT*Jc?« = y. Since T * =, T , it follows from Lemma 10 that T ~

7. Since T was chosen arbitrarily, we have that for all ©’ with T ~; @’ it holds that Trees, " |= y. Therefore,
Treers, T |= 0y y.

We can now prove that the logic PAL-P is strongly complete:

Proof (Theorem 1, Completeness). We prove this by contraposition, showing that 7't/ ¢ implies T’ = ¢. If T 1/ @, then
T U{@} is inconsistent, so there is amecs T* D T containing —@, as the Lindenbaum lemma shows. By the Truth lemma
we have that Treer-, Ty - iff. =@ € T". And thus Treer-, T+ = @, since =@ € T*. Hence there is a model,
namely Tree, and a path namely Tz, where T U {—@} is true and T U {9} is false. Therefore, T = —@, and that is what
we had to show.



2 Coherence Condition Proofs

Lemma 1. if I’ C I, then Cohere(I) - Cohere(I").

Proof. Suppose an intention database I = {(b,,t1),...,(b;,,tn)} with#; < ... <t,. Recall that

Cohere(I) = Qg \/ pre(ar ,ag +1,---,a5,)1, - )
ar€Act:kg{t;,....t, }
ak:hkikG{tl ,u.,[,,}

The case where I’ = I follows directly. Suppose I’ C I. We consider three cases and show that for each case Cohere(I)

Cohere(I'). We write preform(I) to denote the precondition disjunction in the coherence condition, i.e. Cohere(I) =

Qopreform(I). Moreover, if the subscript notation is omitted from a big disjunction, then it is equal to that of Eq. (1).
1. Case 1: I' =1\{(bs,11)}. Thus,

Cohere(I') = g \/pre(a,z,alzﬂ syt )ty -

Using Axiom (A11), we can derive pre(ay, ), for each disjunct in preform(I). Thus, we have that preform(I)
infers pre(ay, ),. From pre(ay, ), using Axiom (A8) we obtain O, do(ay, )y, -
Using (A1) and preform(I), we derive

\/ Oy, pre(ay,, ..., az, )1, - )
axEACt:KE{t1 st }
ak:kakE{tl ,...,t,,}

Note that (O, ¢V, W) — Oy, (¢ V) is a theorem in our logic. Combining this with Eq. (2) gives Oy, pre form(I).
The K-axiom is equivalent to ((J;, @ A O, ) — Or, (@ A y). Therefore, from Oy do(ay, );, and Oy, preform(I) we
obtain O, (do(ay, )y, N preform(I)). Let ¢ = do(ay,);, and preform(I) =y V...V y,. We can rewrite O, (¢ A
(Y1 V...Vyy,) to O (@AY V... VO (@ Ay,). Using Axiom (A12), we obtain

Ore1 V pre(an 1, an, ) 41 3

In each of the disjuncts of Eq. (3). In case #; + 1 < #;, we make another case distinction on gy, 41: for each case
we apply the same procedure as before and we obtain pre(ay, 12,...,as, ), +2 in each case distinction. Thus we can
derive this formula. We can repeat this procedure until #; +i = #,. This means we have shown that

preform(I) — O, preform(I'). 4)

We remains to show is that Qg preform(I) — Oopreform(I'). Let @ = preform(I) and y = Oy, pre form(I’). Using
Necessitation and contraposition, we have (o (—y — —@). Using the K-axiom and contraposition again, we obtain
Q0@ = oW, i.e. Cohere(I) — OoQnpreform(I'). OoQrnpreform(I’) derives Qopreform(I’), so Cohere(I) —
Cohere(I') is a theorem. Hence, by the deduction theorem, Cohere(I) - Cohere(I').

2. Case 2: I' =1\{(by,,tn)}. Using Axiom (A11).

3. Case 3: I' = I\{(by,,t;) } with t; < i < t,. Note that preform(I) — preform(I') is a theorem of our logic. Thus,
using the same technique as in case 1, we obtain - Cohere(I) — Cohere(I'), and again by the deduction theorem,
Cohere(I) = Cohere(I').

Proposition 1. [f an agent A = (B,I) is coherent, then WB(B,I) is consistent.

Proof. First we show that pre(ay,...,am) = Ot (do(a); Ado(ay)i+1 A...Ado(am)i+m). Therefore, suppose (1) pre(ap, . ..

Applying Axiom A1l m times gives pre(ap);. By Axiom A8 we obtain (2) {;do(ap);. From (1) and (2) and by the fact
that pre(ag, .. .,am): = Orpre(ao, . .. ,am):, we derive (3) O; (pre(ass1,- .., am)r+1 Ado(ag)r). Applying the same proce-
dure to pre(a;11,...,am);+1 iteratively until there are not pre formulas left, we obtain {;(do(ag); A Os11(do(ay)s+1 A
...)). By taking the contrapositive of Axiom A3 repeatedly we obtain O;(do(ag): A Q¢(do(ar)i+1 A ...)). Rewrit-
ing this and using transitivity (i.e. ;0,9 — O;@, which isn’t an axiom but can be derived from KT5) we obtain
Ot(do(a); Ndo(ar)is1 A ... Ndo(ap)ivm), i.e. Or Nfgdo(ar) k-

Next, let I = {(by,,11),-..,(bs,,12)} With 1 < ... <t,. By the fact that pre(ay,...,am): b AfLodo(ak) ik, Cohere(I)
(Def. 11) implies

0o V Or, (do(ar, )y, Ado(as 1)1 41 - Ado(ay,)s,

ar€Act:kg{ty,....tr }
ak:bk:ke{rl ,““,t,,}

Consequently, Cohere(I) implies OoOr, A;—; do(by )y, and by (A3) and transitivity this implies Qo A\(4,)erdo(a):-
Therefore, if (B,I) is coherent, then the set BU {{g Naner do(a);} is consistent. By the completeness theorem, this
means that there exists a model m = (7, 7) such that m = B and m [= Qg A(44)erdo(a);. Since B is a strong belief
set, it follows that for all n’ € T : T,%' |= B. Since m |= 0o A\(4)erdo(a);, there exists some n” € T with 7,1 |=
A(ayerdo(a);. But then also 7, 1" |= B, so there exists some model (7,7") with 7, %" |= Band T, 7" |= A\ (4,)e do(a):-
By the completeness theorem we obtain that BU{A\(,s)e; do(a); } is consistent, hence WB(B, ) is consistent.

Proposition 2 (Coherence Condition 2b). If {(a,t),(b,t + 1)} C I and B is a set of strong beliefs such that (B,I)
coherent, then {pre(b);+1, post(a);+1} is consistent with B.

am)[.



Proof. From Lemma 1 it follows that we can assume I = {(a,?), (b, + 1)} without loss of generality. Let B be a set of
strong beliefs whose set of models is M. We need to show that consistency of {pre(b);+1, post(a),+1} with B follows
from our coherence condition. Note that the coherence formula is Cohere(I) = Qgpre(a,b);. By the axiom (A12)
(Definition 4) and the Deduction theorem we have pre(a,b); Ado(a); b pre(b),+1. Using the axiom (A9): do(a); —
post(a);+1 from PAL (Def. 7 [1]) and Deduction theorem we obtain do(a); b post(a);+1. Consequently,

pre(a,b); Ado(a); & pre(b);y1 A post(a);+1.

Thus, in order to prove that { pre(b),1, post(a),+1} is consistent with B, it is sufficient to show that pre(a,b); Ado(a);
is consistent with B. If (B,I) is coherent, then there is a model m = (T,®) € M such that m = Cohere(I), so there is
7' € T such that (T,7') |= pre(a,b);. By Definition 3.2, then there exist ©” € T such that ¥’ ~; " and act(n]) = a.
Then (T,n") |= pre(a,b); Ado(a);. Since M is a set of models of strong beliefs, we obtain (7, 7") € M, i.e., (T,n") is
also a model of B. Then B is consistent with pre(a,b); Ado(a);, by Completeness theorem.

3 Representation Theorems Proofs

Recall that Mod () is the set of models of @. Similarly, given some 7-restricted PAL-P formula @, we define Mod! (@)
as the set of ¢-restricted models of ¢. Recall from the paper that Ext(MlslB) is the set of all possible extensions of a set

of bounded model of strong beliefs M ‘StB to models, i.e.

Ext(Mliy) = {me M | m" € My},

Note that Ext is defined on the sets of bounded models of strong beliefs only. In order to simplify notation in the proof
of the representation theorem, we define the following abbreviation:

Given a set of restricted modesls {m‘f m,, '}, with m (T‘r ) we introduce Ext(m; ‘ m,‘i ) as:
Ext(m{,...,m}) = Ext({(TV 7"} | \/ Th =1l )
k=1

Lemma 2. Given a set of t-bounded models of strong beliefs M. gB, there exists a strong belief formula form(M EB) such
that Mod(form(MgB)) = Ext(MgB).

Proof. For a given Tl we define the strong belief formula

form(T") = N Qoo A\ =000y,

P d=yald TC"’%TV

where
t

Oy = /\ /\ Xn A /\ ~Xn N\ /\ do(a)n

n=0 \yev(nl,) xgv(mh,) act(nh,)=a

Intuitively, f orm(T") is a strong belief formula describing all of the paths of T up to ¢. Each o, is a formula describing
the path 7 up to #: It contains all propositions that are true and false at each time moment, and all actions that are
executed. Note that Axiom A7 of PAL-P ensures that only one action can be executed per time moment.

Let T’ be a tree. From the construction of the formula form(T") it follows that if T/" = TI* | then for every &’ € T’
we have (T’,') = form(T!"). On the other hand, if TV’ # T, then there is 7 such that either nl € 71"\ T’ or
nl € T\ T, Suppose that " € T\ TV’ Then for any &t € T’ we have (T’, 1) £ g0y, so (T', 1) f= form(T!).
Similarly, if ©* € I\ TI, then (T”,7) ¥ 000y, so again we have (T',7) j& form(T!"). Thus, we proved

M()d(f()rm(T")) :Ext({(T‘t,Tclf) eMl | e T‘t}).

Now we define
Sform( M|’SB \/{form T") | (T‘t,nll) S M|’SB}.

Note that our set of propositional letters is finite, and that we have finitely many deterministic actions, so M I spis a
finite set. Consequently, the above disjunction is finite.
Finally, we have

Mod(form(Mllgg))
— UtMod(form(T")) | (T¥,xl') € MV g5
= JEx({(T/' ) e MV sp | nl € TI)

= Ext(M‘tSB).



Note that form is defined on the set of bounded models of strong beliefs only. In order to simplify notation in the proof
of the representation theorem, we define the following abbreviation:

Given a set of models {m,...,m,}, with m; = (T;,n;), we introduce form(my,...,m,) as:

form(my,...,my) ::form({(T",Ttlf) | \n/Tlt = T[‘t}). (6)

1
Lemma 3. IfQ € B, and T)' = T, then (Ty,m1) = @ iff (T2,72) = .
Proof. By induction on the complexity of @.
Corollary 1. Given a t-bounded strong belief set B, there exists a formula \y such that B={¢ | y - ¢}.

Proof. For a given belief set B, from Lemma 3 follows that Mod! (B) is a set of -bounded models of a strong beliefs
such that Ext(Mod" (B)) = Mod(B). If yw = form(Mod" (B)), then form Lemma 2 we obtain Mod (y) = Mod(B), and
by the completeness theorem, B = CI(y). o

Note that for a formula @ € By, the satisfiability of the formula in a model m depends only on the paths in its restricted
counterpart m!", for a set of intentions bounded up to ¢ so we can write that

(M 1) is coherent iff (M, 1) is coherent. 7

Definition 5 (Faithful assignment). A faithful assignment is a function that assigns to each strong belief formula
v € B a total pre-order <y over M and to each intention database I € DI a selection function <, and satisfies the
following conditions:

1. If my,my € Mod(y), then m g{v my and my S(', mj.

2. If my € Mod(y) and my & Mod (), then my < my.
3. Ify =, then g{l,:gg,.
4.

[T =T, then (T,m) <, (T>,72) and (Ty, 1) <!, (T, 7).

Theorem 2 (Representation Theorem). An agent revision operator x; satisfies postulates (P1)-(P12) iff there exists

a faithful assignment that maps each ¥ to a total pre-order S{V and each I to a selection function v, such that if

(W, 1) % (9,1) = (W, 1), then:
1. Mod(y') = min(Mod(9), <!,)
2. I'=v,(Mod(y'),i)

Proof. “="": Suppose that some agent revision operator *; satisfies postulates (P1)-(P12). Given models m; and m,,
let (W,0) *; (form(my,my),€) = (y,0) (note that we use the abbreviation (6) for form). We define g{l, by m S{V my
iff m =y or my =y, We also define ¥, by Y}(MlstB,i) =TI, where (form(M‘StB),I) ¥ (T,i) = (y,I') (note that
) Eform(MgB)).
In order to prove that the assignment is faithful for <, we define Wyo, @ =y’ when (y,0) %, (¢,€) = (y',0). We can
now prove that postulates (P1)-(P6) for x; imply the Katsuno and Mendelzon postulates (R1)-(R6).

(R1) wyo; @ implies ¢

(R2) If yA @ is satisfiable, then Yo, Q = WA @

(R3) If @ is satisfiable, then yo; @ is also satisfiable

R4) Ify=y and 9 = @', then Yo, ¢ =y o, ¢’

(R5) (yo, ®) A@ implies Wo, (¢ A @)

(R6) If (Wo, @) A @ is satisfiable, then Wo, (@ A ¢') implies (yo, @) A ¢’
We show that (R5) holds, i.e. (Wo, @) A@’ implies Wo, (¢ A @’) holds, the other cases are similar. Let us denote with y’
the formula o, ¢, with ' the formula Wo, (¢ A¢"), and with @ the formula @ A ¢'. Then we have (y,0) %, (¢,€) = (¢, 0)
and (W, 0) %, (¢,€) = (§,0). Then by postulate (P5), ' A¢’ implies ¥, or equivalently (yo, @) A@" implies o, (A Q).
Modifying the proof technique of Katsuno and Mendelzon, we show that 1) Sﬁv is a total pre-order, 2) the assignment
Y to <{, is faithful, 3) Mod(y') = min(Mod (@), <,). Then we show that 4) ¥ is a selection function and 5) I' =
¥ (Mod" (y'),i).

1. To show: <!, is a total pre-order.
— To show: Totality and reflexivity. From (R1) and (R3): Mod(y o; form(my,m;)) is a nonempty subset of

Ext(m‘lt,mg ) (note that we use the abbreviation (5) for Ext). Therefore, for each m € Ext(m‘lt) and m’ €

|t

Ext(m,), we have that either m <t m orm 5(4, m. We now show, without loss of generality, that for each

v
m,m' € Exl(m‘f), both m <{, m'" and m’ <{, m hold. Therefore, let m,m’ € Exl(m‘f), som!’ =m!"’. By Lemma 3
of the paper, Mod(form(m!')) = Ext(m!") = Ext(m!"") = Mod(form(m!"")). Hence, form(m) = form(m'), so
form(m,m') = form(m). By (R4): Mod (o, form(m!")) = Mod(yo, form(m,m'))). By (R1), m € Mod (yo,
form(m), so m € Mod(y o, form(m,m')). Hence, by the definition of <{,: m <{, m’. We can prove m" <{, m
similarly. This proves that S{V is total, which implies reflexivity.

— To show: Transitivity. Assume m; g(l, my and my Sﬁ', m3. We show m g(l, m3. There are three cases to

consider:



(a) my € Mod(y). my S(l, mj3 follows from the definition of §§V. ‘
t

(b) my & Mod(y) and m; € Mod (V). Since Mod (W A form(my,my)) = Ext(m, ) holds, Mod (Wo, form(my,my)) =
Ext (m‘zt ) follows from (R2). Thus n £}, m follows from m; & Mod(y). This contradicts m; <{, my, so
this case is not possible.

(c) my € Mod(y) and my & Mod(y). By (R1) and (R3), Mod(y o; form(my,mp,m3)) is a nonempty subset

o .
of E)ct(m‘l 7m‘2 , ml3 ). We now consider two subcases.

i. Mod(\yotform(ml,m27m3))ﬂExt(m‘1t,m‘2t) =0. In this case, Mod (yo, form(my,my,m3)) :Ext(m|3[)

holds. If we regard @ and ¢’ as form(mj,my,m3) and form(my,ms3) respectively in Conditions (R5)
and (R6), we obtain

Mod(yo; form(my,mp,m3)) ﬂExl(mlzt,mg) = Mod(yo; form(mp,m3)).

Hence, Mod(y o; form(mp,m3)) = Ext(m‘;). This contradicts my <{, m3 and my & Mod(y). Thus,
this subcase is not possible.

ii. Mod(yo; form(my,mp,m3)) ﬂExt(m‘lt,m‘zt) % 0. Since m Sil/ my and my & Mod (), m; € Mod(y o,
form(my,my)) holds. Hence, by regarding @ and ¢’ as form(m;,my,m3) and form(mj,m,) respec-
tively in Conditions (R5) and (R6), we obtain

Mod(yo; form(my,mp,m3)) ﬂExt(mllt,m‘zt) = Mod(yo; form(my,my)).

Thus,
my € Mod(yo; form(my,my,m3)) ﬂExt(m‘lt,m‘zt)

holds. By using conditions (R5) and (R6) again in a similar way, we can obtain m; € Mod(y o,
form(my,m3)). Therefore, m; <{, m3 holds.
2. To show: The assignment mapping W to g(v is faithful. We prove the four conditions separately
(a) The first condition follows from the definition of S{V‘
(b) For the second condition, assume that m € Mod(y) and m' & Mod(y). Then Mod(y o; form(m,m’)) =
Ext(m'") follows from (R2). Therefore, m <4, m’ holds.
(c) The third condition follows from (R4).
(d) For the fourth condition, for m; = (T1,m;) and mp = (T»,7,) such that Tl‘t = Tz‘t, let @' be as above. Since
W,V € B;, by Lemma 3 we obtain m; [= y iff my |= y and my |= ' iff my =, so my <{, my and my <{, my.
3. To show: Mod(y') = min(Mod(¢), <},). Note that this can be equivalently rewritten as Mod (yo, ¢) = min(Mod (), <},
). If @ is unsatisfiable then both are empty. So we assume @ is satisfiable. We show both containments separately.
— To show: Mod(yo, ¢) C min(Mod(¢), <},). Assume for contradiction that m € Mod (y o, ¢) and m & min(Mod (9), <},
). By condition (R1), m is a model of ¢. Hence, there is a model m’ of @ such that m’ <(|, m. We consider two
cases:
(a) m' € Mod(vy). Since m’' € Mod(9), W A @ is satisfiable. Hence, by condition (R2), Wo; ¢ = y A @ holds.
Thus, m € Mod(y) follows from m € Mod(y o, ¢). Therefore, m <{, m’ holds. This contradicts m’ <{, m.
(b) Mod(yo; form(m,m')) = Ext(m!"). Since both m and m’ are models of ¢, A form(m,m’) = form(m,m')
holds. Thus,

Mod(y o; @) ﬂExt(m‘ﬂm‘”) C Mod(wo; form(m,m'))

follows from condition (R5). Since we assume Mod( o; form(m,m')) = Ext(ml'"), we obtain m ¢
Mod(y o; @). This is a contradiction.

— To prove: min(Mod(9), <{,) C Mod(y o, §). Assume for contradiction that m € min(Mod(¢), <},) and m ¢
Mod(yo; @). Since we also assume that @ is satisfiable, it follows from condition (R3) that there is an interpre-
tation m’ such that m’ € Mod(y o, @). Since both m and m’ are models of ¢, form(m,m') A = form(m,m’)
holds. By using conditions (R5) and (R6), we obtain

Mod(yo, @) NExt(m',m!""y = Mod (o, form(m,m')).

Since m & Mod(yo; @), Mod(yo, form(m,m')) = Ext(m!"’) holds. Hence, m’ <}y m holds. On the other hand,
since m is minimal in Mod (@) with respect to <{,, m <{, m’ holds. Since Mod (y o, form(m,m')) = Ext(ml"),
m € Mod(y) holds. Therefore, m € Mod(y o; @) follows from condition (R2). This is a contradiction.

4. To show: ¥, is a selection function. This is direct consequence of the completeness theorem and the postulates
(P7)-(P10) and (P12), taking into account (3). For example, if (P7) holds, then y’ is consistent with Cohere(I ’), SO
by completeness there is a model of both ' and Cohere(I"). since Mod(y') = min(Mod(¢), <), we obtain that
(Mod(y'),I') is coherent.

5. To show: I’ = ¥;,(Mod! (), i). By our definition of ¥, we have that (y/,1)  (T,i) = (¥, Y,(Mod(y'),i)) (recall
that W' = ). Since (y,1) % (¢,i) = (¥, I'), by (P11) we obtain that I = ¥;(Mod ('), i).



“«": Assume that there is a faithful assignment that maps  to a total pre-order S{y and [ to a selection function ;. We
define the z-bounded revision operator *; as follows:

(¥,€) # (§,¢) = (form(min(Mod (¢), <},),¥,(min(Mod" (9), <\,),i)).

First we show that the operator is well correctly defined, i.e. that min(Mod' (), <y) is a set of #-bounded models of

strong beliefs. Let T = T". Since ¢ € Bl , by Lemma 3 we obtain that (7,7) = @ iff (T’,7') = ¢. Now suppose that
(T,m) € min(Mod(¢), <,). If (T",n') ¢ min(Mod(¢), <{), then (T, ) < (T’,n), which is impossible by the definition
of faithful assignment. Thus, min(Mod (¢), <y) is a set of #-bounded models of strong beliefs.

Let us now prove that %, satisfies the postulates (P1)-(P-12). In order to prove the first six postulates, we define the
operator o; by Wo; @ = form(min(Mad"((p), S(l,)) Let use show that o, satisfies conditions (R1)-(R6) of KM (see the
(=) part of the proof). It is obvious that condition (R1) follows from the definition of the revision operator o,. It is also
obvious that conditions (R3) and (R4) follow from the definition of the faithful assignment. What remains to show is
condition (R2), (R5), and (R6).

— To prove: (R2). It suffices to show if Mod(y A @) is not empty then Mod (Y A ¢) = min(Mod(¢), <,). Mod(y A
¢) C min(Mod (), <{,) follows from the conditions of the faithful assignment. To prove the other containment,
we assume that m € min(Mod(9), <{,) and m ¢ Mod (¢ A @). Since Mod(y A ¢) is not empty, there is a model
m' € Mod(y A @). Then m £, m’ follows from the conditions of the faithful assignment. Moreover, m' <{, m
follows from the conditions of the faithful assignment. Hence, m is not minimal in Mod (@) with respect to g{v.
This is a contradiction.

— To prove: (R5) and (R6). It is obvious that if (Wo, @) A ¢’ is unsatisfiable then (R6) holds. Hence, it suffices to
show that if min(Mod (u), <{,) " Mod (') is not empty then

min(Mod(9), <\,) "Mod(¢') = min(Mod (¢ A ¢'), <},

holds. Assume that m € min(Mod (), <{,) "Mod(¢') and m ¢ min(Mod (9 A "), <{,). Then, since m € Mod (¢ A
'), there is an interpretation m’ such that m’ € Mod (@ A@') and m' <y, m. This contradicts m € min(Mod (¢), <},).
Therefore, we obtain

min(Mod(9),<{,) "\Mod(¢") C min(Mod(¢ N ¢'), <},).

To prove the other containment, we assume that m ¢ min(Mod (), <{,) "Mod(¢') and m € min(Mod(¢ A ¢'), <},
). Since m € Mod ('), m ¢ min(Mod(9), <{,) holds. Since we assume that min(Mod(9), <},) N Mod(¢') is not
empty, suppose that i’ is an element of min(Mod(9), <{,) NMod(¢'). Then m’ € Mod(¢ A ¢') holds. Since we
assume that m € min(Mod (@ A ¢'),<{,) and <}, is total, m <{, m" holds. Thus, m € min(Mod(¢), <},) follows
from m' € min(Mod (), <!,). This is a contradiction.
Note that the conditions (R1)-(R6) imply the conditions (P1)-(P6). For example, suppose (R3) and let (y,1) % (¢,i) =
(y',1'). Then y' = form(min(Mod(9), <{,) "Mod(¢')) = Wo, ¢ so if @ is satisfiable, y' is satisfiable as well. Thus,
(P3) holds.
The postulates (P7)-(P10) follow directly (using the completeness theorem and taking into account (3)) from the con-
ditions the conditions 1-4 of the definition of selection function, and (P12) follows from the fourth condition as well.
Finally, let us prove (P11). Let (y,1) % (¢,i) = (¢, I’) and (¥,1) *; (§,i) = (§,T'), and suppose that I =7, i =7, and
V' =V Then Mod(y') = Mod(¥'), i.e. min(Mod(¢), <{,) = min(Mod(¢'), <) s0

I = ) (min(Mod(9), <,),i) = ¥ (min(Mod(¢'), <i,)),i) =T

Finally, we briefly discuss iterated revision. It turns out to be straightforward to formulate the for iterated revision in
our framework for the strong beliefs. Following DP, instead of performing revision on a strong belief formula, we have
to perform revision on an abstract object called an epistemic state ¥, which contains, in addition to the strong beliefs
Bel (W), the entire information needed for coherent reasoning. We refer to an agent (¥, C) as an epistemic state agent.

Definition 6 (Iterated Agent Revision). An iterated agent revision *; maps an epistemic state agent (¥,I), a strong
belief ¢ € Bl and an intention i to an intention database I' such that if,
((lPJ) *t ((p/7i)) *t ((pacl) = (qﬂvll)
(W.1) % (9.0) = (F.T),
then following postulates hold:
(CH Ifo=¢/, then ¥ =¥
(C2) If o =0, then V' =¥
(C3) IfY =@, then V' = ¢.
(C4) IfP [ —@, then ¥ [ ¢

Theorem 3. Suppose that an agent revision operator on epistemic states satisfies postulates (P1)-(P12). The operator
satisfies postulates (C1)-(C4) iff when (¥,I) % (@,i) = (V',I'), the operator and its corresponding faithful assignment
satisfy:

(CRI1) Ifmy |= @ and my |= @, then my <\ my iff my <{, my.

(CR2) If my = @ and my [~ @, then my <4 my iff my <§ my.

(CR3) Ifmy |= @, my b= @ and my <l my, then my <, my.

(CR4) Ifmy |= @, my = @ and my <l my, then my <G, mo.

Proof. Direct generalization of the proof of Darwiche and Pearl (using the same abbreviation o; as in the previous
proof).
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